International Journal of Theoretical Physics, Vol. 40, No. 7, 2001

Spinning Particles in NUT-Reissner—Nordstrom
Space-Time
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We study the geodesic motion of pseudo-classical spinning particles in the NUT—
Reissner—Nordstrom space-time. We investigate the generalized Killing equations for
spinning space and derive the constants of the motion in terms of the solutions of these
equations. We give an analysis of the motion on a cone and on a plane.

1. INTRODUCTION

In recent years there has been an interest in studying spinning particles, such
as Dirac fermions, in curved space—times. These spinning particles are described by
pseudo-classical mechanics models in which the spin degrees of freedom are char-
acterized in terms of anticommuting Grassmann variables (Baretietj 1976;
Berezin and Marinov, 1977; Brinkt al., 1976, 1977; Casalbuoni, 1976; Gibbons
et al, 1993; Rietdijk and van Holten, 1990, 1993; van Holten and Rietdijk, 1993).
Rietdijk and van Holten (1993) studied spinning particles in the Schwarzschild
space-time. Visinescu (1994a,b), Vaman and Visinescu (1996, 1998, 1999), van
Holten (1995), and Baleanu (1994) investigated pseudo-classical spinning parti-
cles in the Taub—NUT space—time. In a previous study (Ali and Ahmed, 2000),
we studied spinning particles in the Reissner—Nordstrom (RN) space—time. In the
present paper we investigate the geodesic motion of pseudo-classical spinning
particles in the NUT-RN space—time, which is the RN space—time generalized
with NUT (or magnetic mass) parameter. This work may be interesting in that it
provides results parallel to those obtained in the RN and Taub—NUT space—times.

The NUT-RN space—time includes the NUT space-time that is sometimes
considered as unphysical. According to Misner (1963), the NUT space—time is one
that does not admit an interpretation without a periodic time coordinate, a space—
time without reasonable spacelike surfaces, and an asymptotically zero curvature
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space—-time that apparently does not admit asymptotically rectangular coordinates.
McGuire and Ruffini (1975) suggested that the space—times endowed with NUT
parameter should never be directly, physically interpreted. This makes the study
of pseudo-classical spinning particles in the NUT-RN space—time interesting.

The plan of this paper is as follows. In section 2 we summarize the relevant
equations for the motion of spinning particles in curved space—time. The genera-
lized Killing equations for spinning spaces are investigated, and the constants
of motion are derived in terms of the solutions of these equations. In section
3 we analyze the motion of pseudo-classical spinning particles in the NUT-
RN space-time. We examine the generalized Killing equations for this space—
time and describe the derivation of the constants of motion. In section 4 we solve
the equations derived in the previous section for the special case of motion on a
cone and in a plane for which we choase- /2. In section 5 we investigate a
new type of supersymmetry in the NUT-RN space—time. Tibisgenericsuper-
symmetry is generated by the Killing—Yano tensor. In section 6 we present our
remarks.

2. MOTION IN SPINNING SPACE

The geodesic for spinning space can be obtained from the action,

Dt

The overdot, here and in the following, denotes an ordinary derivative with respect
to proper timed/dz. The covariant derivative of Grassmann coordinatésis
defined by

b i v
5= [ dr(F0u0085 + 59000+ 20 ) )

Dyr#
Dt

The trajectories along which the action is stationary under arbitrary variations
3x* andsy* vanishing at the endpoints are given by

=y + XLy ()

D2xH 1
— XM " x*x¥ = — ¥ ARH V)'(v 3
D2 o 5V v Ra 3

Dy+
=0 4
Dy (4)
The antisymmetric tensor

§ = —iytyt 5)

can formally be regarded as the spin-polarization tensor of the particle [Barducci
et al, 1976; Berezin and Marinov, 1977; Brirdt al, 1976, 1977; Casalbuoni,
1976; Rietdijk and van Holten, 1990, 1993; van Holten and Rietdijk, 1993]. The
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equations of motion can be expressed in terms of this tensor. Equation (4) asserts
that the spin is covariantly constant,

DS
= 6
Dy (6)
Equation (5) implies the existence of a spin-dependent gravitational force
D2xH 1
= SR X 7
D2 = 2 Wk Q)

The spacelike componen® are proportional to the particle’s magnetic dipole
moment, while the timelike componer® represent the electric dipole moment.
In the rest frame, the componer® vanish for free Dirac particles like free
electrons and quarks. This leads to the covariant constraint.

0. (X)9%* =0 8
In Grassmann coordinates it takes the form
G (X)X y” =0 )

The concept of a Killing vector can be generalized to the case of spinning
manifolds. For this purpose it is necessary to consider variatioxts afidy * that
leave the action (1) invariant modulo boundary terms. Let us take the variations to
be of the form

oo
. 1. .
SxM = RM(x, X, ¥) = RMH(x, y) + E :wa xR (),
n=1""

. 1 :
Syt = SM(x, %, ) = S (x, ¥) + ) EESER W (x,¥)  (10)
n=1""
The Lagrangian transforms into a total derivative

b d i
8S= /a dr dr <(SXM Pu — IE‘SWMQMM&U = J (X, X, 1ﬁ)> 11)

wherep, is the canonical momentum conjugatexto
val I vV I v
P = QX" + Erlw:ﬂ/’wf =11, + Erlw:“ﬁwf (12)

I1, being the covariant momentum. If the equations of motion are satisfied, it
follows from Noether’s theorem that the quantifyis a constant of motion.
We consider the world-line Hamiltonian given by

1
H = Sg"TLIL, (13)
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For any constant of motiofr (x, I, ), the bracket wittH vanishes
{H,J}=0 (14)

where the Poisson-Dirac brackets for two functions of the covariant phase—space
variables , IT, v) is defined by

: G oF oF 3G . aF aG
{F,G} =9 F — f/)G_RMU_ +|(_1)aF
. BH;L anu H al'lu oIl, awﬂ« 3%1
(15)
with

OF o 0 OF
om, M

7, F =8,F+T;,T,

R;w = IEWUIPA RG)»,U,V (16)

Here,ar is the Grassmann parity &f: ar = (0, 1) for F = (even, odd).
If we expand7 (X, I, ¥) in a power series in the covariant momentum

> 1
T =T+ S e g0, (x,9) (17)
n=1""

then the bracketH, [} vanishes for arbitrary1,, if and only if the components
of J satisfy the generalized Killing equations (Rietdijk and van Holten, 1990; van
Holten and Rietdijk, 1993)

0 i :
(U1 o o +1
D(V-n+1 LZE?..””) + #Funﬂh w)\ = El/f I/IA Ro)»l)(un+1\7;£r11m;,¢)n) (18)

where the parentheses denote full symmetrization over the indices enclosed.

In general, the symmetries of a spinning particle model can be divided into
two classes. First, there are four independgrtericsymmetries, which exist in
any theory [Rietdijk and van Holten, 1990; van Holten and Rietdijk, 1993]:

(i) Proper-time translations generated by the Hamiltortia(i3);
(iiy Supersymmetry generated by the supercharge

Q=[]v" (19)
"

(iii) Chiral symmetry generated by the chiral charge

i[d/2]
F* = T \/68”1..4,% Iﬂﬂl see wﬂd (20)
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(iv) Dual supersymmetry, generated by the dual supercharge

_ ild/2]
Q* =i{ly, Q} = M@ 81”“.%1-[#11##2 ot (21)
whered is the dimension of space—time.

As a rule one has the freedom to choose the value of the supercamge
any choice gives a consistent model. The condition for the absence of an intrinsic
electric dipole moment of physical fermions (leptons and quarks) as formulated
in Eq. (9) implies

Q=0 (22)

However, for the time being, we shall not fix the value of the supercharge to keep
the presentation as general as possible.

The second kind of conserved quantities, catledgeneric depend on the
explicit form of the metricg,, (). In recent literature there have been exhibited
the constants of motion in the schwarzschild [Rietdijk and van Holten, 1993],
Taub—NUT [Vaman and Visinescu, 1996; 1998; van Holten 1995; Visinescu, 1997,
1994a,b], Kerr-Newman [Gibbores al, 1993; van Holten, 1994] spinning spaces.
Inwhat follows we shall deal with theongenericonstants of motion in connection
with the Killing equation (18).

We remind that a tensof,, is called a Killing—Yano tensor of valence 2
[Dietz and Rudinger, 1981; Yano, 1952] if it is completely antisymmetric and it
satisfies the equation

D, f, + Dy f, =0 (23)

The Killing—Yanotensors play a key role in the Dirac theory on a curved space—time
[Carter and McLenagham, 1970]. The study of the generalized Killing equations
strengthens the connection of the Killing—Yano tensors with the supersymmetric
classical and quanntum mechanics of curved manifolds.

The nongenericsymmetry of the theory is generated by the phase-space
functionQy¢,

Qt =g, + JO© (24)

where7W(x, v) and7O(x, ¥) are independent dil. This charge generates the
supersymmetry transformation

SxM = —ieflyd = —iggWH (25)

where the infinitesimal parameterof the transformation is Grassmann odd.
Greek and latin indices, which refer to world and Lorentz indices respectively,
are converted into each other by the vielbein (tetefdx) and its inverseh (x).
When the ansatz (24) is inserted into the generalized Killing equations (18), it
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follows that
i
JO = gcabc(x)l/fal/fblffc (26)
where the tensor§,’ andCyy. satisfy the conditions
D, fia+D,fia=0 (27)
and
DuCabc = _(R;wab fcv + R;wbc f; + R;wca fk;)) (28)
Using Egs. (23) and (28) the tengd4;,. can be expressed as follows:
Cabe = —2Dy, be] = —Zeg‘e;e’c\ D[“ fw\] (29)

where the square brackets denote full antisymmetrization over the indices enclosed.
Let there beN such symmetries specified By sets of tensorsf(,, Cianc), i =
1,..., N. The corresponding generators will be

Qi = fignul//a + % Ciabc 1/fal/fb1/fc (30)

Obviously, for f§* = €4 andC,pe = 0, the supercharge (19) is precisely of this
form. Itis therefore convenient to assign the index 0: Q = Qo, €4 = fy,, etc.,
when we refer to the quantities defining the standard supersymmetry.

The covariant form (15) of poisson—Dirac brackets gives the following algebra
for the conserved charg€y :

{Qi, Qj} = -2 Z; (31)
where
1 .
Zjj = 5 K{Y LI, + 1T, + G (32)
and
v 1 V. v v
Ki" = E(figfja‘f' fia %) (33)
i
Ii/jL = E‘ﬂa‘ﬂbli/fab
i a b v 1 v " 1 ne 1 ne
= E‘p ¥o| fipDy fja + fjb D, fia + > fi Cjabc + > fj Cianc (34)
1 a b ,c,d
Gij = =¥ Y v "¢¥" Gijabcd

4

1 L ey 1
= _Zwa‘/fbwcwd<R;wab filc jd + ECieab Cjcde) (35)
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We note thakK;; ., is a symmetric Killing tensor of second rank:
D Kijun) =0 (36)

I/{ is the corresponding Killing vector:

] i i
Plijw = —Elﬂalﬁb D lijvyab = EWaWbRam(M K (37)

andG;; is the corresponding Killing scalar:
9 ____}abcd B _i_ab 2
- /MGIJ - 41/f 1/f 1/’ lﬁ DMGIJade - 21/[ l/f RabAu ||J (38)

The functionsz;; satisfy the generalized Killing equations. Hence their bracket
with the Hamiltonian vanishes and they are constants of motioni. Eoj = 0,
Eq. (30) gives the usual supersymmetry algebra

{Q Q}=-2H (39)

If i or j is not equal to zeroZ;; correspond to new bosonic symmetries unless
K{" = 1aj)@"", with 1) a constant (may be zero). Then the corresponding Killing
vector If and Killing scalarG;; disappear identically. Further, ifj;) # O the
corresponding supercharges close on the Hamiltonian and hence there exists a
second supersymmetry of the standard type. Thus the theory admiexended
supersymmetry wittN > 2. Again, if we have a second independent Killing tensor
K*¥ not proportional ta@y*¥, there exists a genuine new type of supersymmetry.

The quantityQ; is a superinvariant

{Qi,Q}=0 (40)
for the bracket defined by (15). The condition for this is
Ki' = fle® + fe®=0 (41)

As the Z;; are symmetric inif) we can diagonalize them. This provides the
algebra

{Qi, Qj} =-28; Z (42)

whereZ; areN + 1 conserved bosonic charges. If @] satisfy condition (41),
the first of these diagonal charges (witk= 0) is the HamiltonianZy = H.

3. GEODESIC MOTION IN NUT-REISSNER-NORDSTROM
SPACE-TIME

In this section we shall apply the results of the previous section to investigate
the geodesic motion of a spinning particle in the NUT-RN space—-time described
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by the matric
2
ds? = —N(r) [dt + 4nsir? (%) d(p] + N7Y(r)dr?

+(r2 + n?)[de? + sirf 6 dy?] (43)

where
2 , €

n is the NUT (or magnetic mass) parametethe charge, and the total mass
of the gravitating body. The space—time, given by (43) and (44), gives (i) the
NUT space—time foe = 0, (ii) the Reissner—Nordstrom space—time ifice 0,
and (iii) the Schwarzschild space—time foe= e = 0.
Spaces with a metric of the form given above have anisometry gsalip) x
U (1). The metric has the four Killing vectors:

D(a) — R(a)ﬂau, a=0,...,3, (458)

where

0 . 0 0 6 0
DO=_—_ DW= _sing — — coth cosp — — 2ntan( = | cosp —
at 36 99 2 at

d . d 0\ . 9
D® = cosp — — cotd sing — — 2ntan( = ) sing —,
90 dp 2 ot
0 d
DO = — —2n— (45b)
ap at
D©, which generates thd (1) of t translations, commutes with the other Killing
vectors. The remaining three vectors obeysah(2) algebra with

[D@, D®] = —£3*°D@, (a, b, c=1,2,3) (46)

This can be contrasted with the Reissner—Nordstrom space—time, where the
isometry group at spacelike infinity 80(3) x U (1). This illustrates the essential
topological character of the magnetic mass (Mueller and Perry, 1986; Sorkin,
1983).

In the purely bosonic case these invariances would correspond to conservation
of the so-called “relative electric charge” and the angular momentum (Cordani
et al,, 1988; Feher and Horvathy, 1987; Gibbons and Manton, 1986; Gibbons and
Ruback, 1987, 1988; Visinescu, 1993; Zimmerman and Shabhir, 1989).

q= —N(t' + 4nsir? (%) gb) (47)

j=rx p+2nq; (48)
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The first generalized Killing equation has the form
9B
ok
This shows that for each Killing vectoR®, there is an associated Killing scalar,

B@®), So, if we limit ourselves to variations (10) that terminate after the terms linear
in X*, we get the constants of motion

5+

[
ro, gt = él/m/,o Riovu R®” (49)

@ _ B@ 4 xuR@
J@ = B@ 4 %R (50)

Equation (50) asserts that the Killing scalars contribute to the “relative electric
charge” and the total angular momentum.

Inserting the expressions for the connection and the Riemann curvature com-
ponents corresponding to the NUT-RN space—time in (49), we obtain for the
Killing scalars

BO =vS" —4nV sir? (%)S"” —2nN sing S (51a)

0
BW = —2nV cosp tan(i) (1+ cosg) S
—nN cosp cosd §¢ — r sing S?
0 . 0 .
+ cosy cotd [anv cosd tan(z) sir? <§> —r smze}s”"
. %
+ cosp [(r2 + n?)sirf 0 4+ 4n’N — 8nN tar? (5” s (51b)
%
B® = —2nV singotan<§>(1+ cosh)S" — nNsing cos#S? +r cosp S’
. , o\ ., (6 .
+ sing coté | 8n2V cosd tan > Sir? S) =T Sirf o |S¢
%
+ sin<p[(r2 +n?)sirf 6 + 4n?N — 8n?N tarf <§)} S (51c)
B® = —2nV cos#S" + 4nV sir? (g)sw
+ [r Sirf 6 + 8n?V sir? (%) cog 9}8"”

+sin9[(r2+ n?) cosd —2n2N<1-1-4sin2 (%))]S"“’ (51d)
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where
V= W[M(rz—nz)—i—(an—ez)r] (51e)

andN is given by (44).
Taking into account the contribution of the Killing scalars, one finds for the
conserved quantitieg @,

70 = BO 4 g (52a)
JD = BM — (r2 4+ n?)sing 6 — (r? + n?) cosh sinf cose ¢ + 2ngsind cosy
(52b)
TP = B®@ 4 (r2 + n?) cosp 6 — (r2 + n?) cosd sind sing ¢ + 2nqgsind sing
(52c¢)
T® = B® 4 (r2 4+ n?)sirf 6 ¢ + 2nqcosy (52d)

It is obvious that the “relative electric charge}, is no longer conserved,
contrasting with the purely bosonic case. Also, the conserved total angular mo-
mentum is the sum of the orbital angular momentum, the Poincare contribution
and the spin angular momentum

J=B+]j (53)

with 7 = (J®, 7@, 7@y andB = (B®, B@, BO)).
From (52) we can derive two very interesting relations

JWsing — 7@ cosp = —rS? — (r2+n?)é (54)
JWsing cosp + 7@ sing sing + 7 cosp

=2ng©@ —4nv S + <4V sir? (%) — N sin@)ncosé)sw

+ 8n%V sir? (%) [1+ co§0(cos@ + tan(%))]s“” + [(r2 +n?)
+ 8n°N <1 — tar? (%)) —2n?N (1+ 4 sir? (%)) cose} sineS’?  (55)

Equation (55) expresses the fact that the total angular momentum in the
radial direction receives contributions from the spin angular momentum, the orbital
angular momentum in that direction being zero.
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In addition there are four universal conserved charges described in the previ-
ous section. Using the notation from this section, we have

(i) The energy
E= ir + = (r +n?)(0° + sit0p?) — = <'t + 4nsir? <€>(p)2
2N 2

(56)
(ii) The supercharge

Q= ihpf +(r2 4+ n)oy? + gyt

[4n sir? ( )q + (r? 4 n?) sir? 9g0i| (57)
(iii) The chiral charge

T, = (r?+n?)sinoy oy ey (58)
(iv) The dual supercharge

Q* =+ m)sindFy y*y' — oy yoy!

+outylyt =ty ) (59)

Finally, keeping in mind tha/* is covariantly constant as formulated in (4),
the rate of change of spin is

' =[N = (r2+ n)V](6y° + sirt 0oy ?) (60a)
0 ro P i 0
V=i e +n2w
. 4n? i o ¢

+sind| | cosd — > n ———Si > 0+ — o n2 ) (60b)
3 = " _cosed byt — Yyt —(coto i + na ———cosed |y’

r2 4+ n? r2+4n? 24+ n2

re 2n°N 0\ :
— [m + (cot@ — r2+—nztan<§>>9]w‘” (60c)

<.
|

. 20°N tanee v+ 4nsm2 r 2V, Y A
N r24n 2 N )Y N2

6 . 2n?q 0
2 nz—t 7t — |y?
( n si anzgo 2112 an2>¢

r \Y; 0 0 4n2N .
ansit = —— — — ) —2nsif=tan=(1+ —— |0 | v*
+[ ! 2<r2—|—n2 N) ! 2 2( +r2+n2> ]w

(60d)
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As a rule these complicated equations could be integrated to obtain the full
solution of the equations of motion for the usual coordinates and Grassmann coor-
dinates. These equations are quite intricate and the general solution is by no means
illuminating. Instead of the general solution, we shall discuss special solutions in
the next section for the motion on a cone and in a plane.

4. SPECIAL SOLUTIONS

In this section we solve the equations derived in the previous section for the
motion on a cone and in a plane. We first consider the motion on a cone.

Let us choose the axis alongJ so that the motion of the particle may be
conveniently described in terms of polar coordinates

r=re0, ) (61)
with
e = (siné cosgp, sind sing, cosh). (62)

The equations of motion for the spin components wiea 0 are

SH rf S“9+sin9[(cos«9 4n°N S|n2< >>¢+ 19 ]S“”

r2+n2 2+ 2 r2+n2
—[rN — (r? + n®)V]sin?0y S (63a)
g0 " qo_(cothp+ —"9_cosew s 63b
r2+n? (p+r2+n2 S (63b)
. 2rf ro
Y _ [ 0
s = S S (63c)

ot (V. :
&= (N r2+n2> 'S’
. 4N, (0. n
+sing [(cos@ i sir? <§><p + r2+7qnz} st
. % r 2V . \
s (5) (2~ )o e

+4nsir? (%) (rzjrinz _ %)rsﬂ‘ﬂ (63d)
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. Vv
' = [rN = (r2+ n)V]sin20p S + Nrs”

0 WY LAY ng o
—2n tan(i) (sm2 <§)<p — m)s‘

+ 4nsir? (%) (rzjrinz - %)rsw (63e)
§' = —rzr_:_.pnzs” — cosecﬁ(cose(er rzrj,_iqnz>5m + (% - r2:-n2>fs(pt

o (e S Y

+2ntan(%)(sin2 <%)(p— rzliqnz)s‘)“’ (63f)

Since we are looking for solutions with= 0 and becausg® = 7@ =0,
we have from (54),

S?=o0 (64)

This relation implied”, = 0.
A particular solution may be obtained, if we cho®® = 0, in the from

e

SY = —— 65
NZFT (652)
Co%
o (N Y e onsire (2) S
g _(r2+n2> C’ — 2nsir? 5 e (65c)
0 C'¢
St = VNC't — 4 'n2<—)7 65d
nsin' | 5 N (65d)

whereC'¢, C%, C%, C'" are Grassmann constants.

We investigate the case in whic@ = 0 (Eq. (22)). From Rietdijk and van
Holten (1993), we havé', = Q* = 0. For the spin components we deduce the
following relations:

fﬁsm = [(errnz)sin245?<'p+4nsin2 (%)q}s""’—kqs‘“ (66a)
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f _ t
Ns“ﬂ =q¥ (66b)
%s“ = —[(r2+n2)sir?9¢+4nsin2 (%)q}sﬂ (66c)

The conditionQ = 0 modifies drastically the form of the solutions.
In spite of the complexity of the equations, we have a simple exact solution
for the components of the spin-tensor,

S v 67
Cr24n? (67)
From (52) we can deduce that
Op
=JO 4 2nNsing —— 68
qa=J"+ e (68)
. 1 2ng©  4n’N 4 — cosd(1+ cosd sing
@ = J + C— (L+ 089 oy SN0 g (69)
r2+n2| cosd r2+n?  sing(1l+ cosb) cosf

These relations may be integrated to obtain the expressiogsdndt. We
can deduce from the energy, given in (56).

We now study the special case of motion in a plane, for which we choose
6 = 7 /2. For scalar particles any solution would actually describe planar motion,
because the orbital angular momentum of a scalar particle is always conserved.
But this is no longer true in general for spinning particles, for which only the total
angular momentum is constants of motion. Planar motion of spinning particles is
strictly possible only in special cases, in which orbital and spin angular momentum
are separately conserved. This happens only in two kinds of situations: (i) the
orbital angular momentum vanishes, or (ii) spin and orbital angular momentum
are parallel (Rietdijk and van Holten, 1993).

For6 = /2 the equations of motion are

: re 2n2N . .

Gz—mge—mgﬁgw—[rN—(rz—l—nz)V]goSW (70a)
ge re v

- (700)

. 2rf ro

¢ _ 0
S = S (700)
: \Y; r 2n2N r 2V
o (L )ist— K _oanf —— — =— )pS?

N r2+n? 24+ n2? rzrm2 N J?

r V.
+ 2n<r2+7n2 — N)rS"V) (70d)
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. \Vj r \Y
§t = —iS'—neS?l+2on[ —— — — )iS¥

N 9= r2+nz N

+[rN — (r2 4+ n?)V]ps* (70e)
. \% r ) . ro
S R iS4+ nepSe — St

N r24+n2 e r24+n2
r 2V \ .
NG (70n

Case (i) In this case the solution describes a particle moving along a fixed
radius, for whichp'= 0. We are able to obtain a simple exact solution,

cre
S¢=————— 71a
Vr24+n? (712)
cf
S =—"— 71b
r2+n? (710)
N \Y? nche
§'=(5—=) C"- 71
r2 + n2 r2 + n2 ( C)
cre
St =VNC" —2n——— 71d
V24 n? (719
N 1/2
S'=(5—5) c* 71e
(7o) (71e)

A special interest represents the case when the supersymmetry constraint
Q = 0. From this condition we obtain,

f ) f .
NS” = (r? 4+ n?¢ps’, NSrt =—(r2+n?ps! (72)
For ¢ = 0 we only have a spin component nenule,
(o4

S —— 73
r2+4n2 (73)
In this case andi have a simple expression,
_ . 4n°N JO
= +/2EN, t=|—>——=—-1|— 74
' [rz +n2 } N (74)

Case (ii). This possibility concerns motion for whigh £ 0. FromQ =0
we obtain the following relations:

fﬁsm — 7O, %gt = —J®g. (75)
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Itis very interesting that even in this case we have a spin component nenule:

go o C° 6
- 7

r2 + n2 ( )
In this case the expressions for thep, andi can be integrated to give the full
solution of the equations of motion for all coordinates and spins:

. JO cov .

t=-" —2n<7r2+nz +<p) (77a)

F = (N(2E — (r? + n?)p?)}? (77b)
1 Co¥

by — (©) 2

(p_r2+n2<‘7 +6n Nr2+n2>' (77c)

5. NONGENERIC SYMMETRY

In this section we apply the results of section 2 to investigate a new type of
supersymmetry in the NUT-RN space—-time described by the metric in (43). The
electromagnetic field in this space—time is described by

F=er?+n?r2—n%dr A [dt + 4nsir? (%)d(p}

—2e(r2 4+ n?)~*nr singdo A r2dy (78)

The Killing—Yano tensor is obtained from
1 v i o ; 2
Ef,wdx“ Adx’ = —ndr A |dt + 4nsir? > de | —rsinede Ar2de (79)
The vielbeine’ (x) has the following expressions:

(%
e dx* = —\/ﬁ[dt + 4nsir? <§)d<p]
1
e dx' = ——dr
N

€ dx* = /(12 +n?)do
siné 2

3
e, dx* = — (80)
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The components of ?(x) can be written as follows:

FOdx = —— dr

VN
fldx* = mn[dt + 4nsir? (%)dw}

r3sing q
V(2 +n?)
f2dxt =ry/(r24n?)do (81)

Using Eq. (29) we get the components&f,(x) as follows:

2
f2dx = —

Co12=0, Co1z=0, Co23 =0, Cizz=—2VN (82)

Inserting the quantities derived in Egs. (81) and (82) into Eqg. (30) we obtain the new
supersymmetry generat@; for the NUT-RN space—time. From Eq. (33)—(35)
we can construct the Killing tensor, vector, and scalar. The results are

2 0 2
Kuw(X) dxdx” = _nﬁ dr? + nZN[dt + 4nsir? (E)dw}

résir 6
m d(p2 + rz(l’z + nz) d92 (83)

r sing
|M(X)dXM = 2r2x/ﬁ (\/ﬁgw + \/NCOSQ Sg(ﬂ) d(p

—(r?+n?)Ncosd % dg
—V((r2 4+ n2)N)(r sin@S?¥ +/((r2 + n?)N) cosh S*) de
+V/((r2+n?)N)(nS¥ +rS) do (84)

—2en
G=——-95'9¥ 85
r2 + n2 ( )
From the Poission—Dirac brackets (15) it can be verfied in a straight forward
manner that these equations satisfy 83, 1) algebra.
The expression foQ ¢ and Eqgs. (83)—(85) then define the conserved charge

Z =i/2{Qs, Qt}.
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6. REMARKS

Our main concern has been the motion of pseudo-classical spinning particles
in the NUT-RN space—time. In this analysis we have restricted ourselves to the
contribution of the spin contained in the Killing scal&@€)(x, v) defined by (49).

In spite of the complexity of the equations, we are able to present special solutions
for the motion on a cone and on a plane. The supersymmetry consfyain®
plays a very important role for the forms of solutions.

The supersymmertric extension of the NUT-RN space—time admits four stan-
dard supersymmetries along with several fermionic symmerties. The existence of
such fermionic symmetries is closely related to the existence of Killing—Yano
tensors (Vaman and Visinescu, 1996; Gibbehal.,, 1993).

The Killing tensorK,, given in (83) defines a constant of motion (directly)
for spinless particles in NUT-RN space—time, whereas for spinning particles it
requires the nontrivial contributions from spin, which involve the Killing vector
and Killing scalar computed in (84) and (85). This spin-dependent part is described
by the antisymmetric Killing—Yano tensdy, , which satisfies (23) and is the square
root of the Killing tensor.

The results of this paper may be interesting in the study of fermion modes in
gravitational instantons as well as in long-range monopole dynamics. The results
can be specialized for the NUT, Reissner—Nordstrom, and Schwarzschild space—
times fore = 0,n = 0, ande = n = 0, respectively. The results can be extended
to the NUT-RN space—time generalized with a cosmological parameter. This type
of extension may be interesting from the point of view of an inflationary scenario
of early universe.
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