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We study the geodesic motion of pseudo-classical spinning particles in the NUT–
Reissner–Nordstrom space–time. We investigate the generalized Killing equations for
spinning space and derive the constants of the motion in terms of the solutions of these
equations. We give an analysis of the motion on a cone and on a plane.

1. INTRODUCTION

In recent years there has been an interest in studying spinning particles, such
as Dirac fermions, in curved space–times. These spinning particles are described by
pseudo-classical mechanics models in which the spin degrees of freedom are char-
acterized in terms of anticommuting Grassmann variables (Barducciet al., 1976;
Berezin and Marinov, 1977; Brinket al., 1976, 1977; Casalbuoni, 1976; Gibbons
et al., 1993; Rietdijk and van Holten, 1990, 1993; van Holten and Rietdijk, 1993).
Rietdijk and van Holten (1993) studied spinning particles in the Schwarzschild
space–time. Visinescu (1994a,b), Vaman and Visinescu (1996, 1998, 1999), van
Holten (1995), and Baleanu (1994) investigated pseudo-classical spinning parti-
cles in the Taub–NUT space–time. In a previous study (Ali and Ahmed, 2000),
we studied spinning particles in the Reissner–Nordstrom (RN) space–time. In the
present paper we investigate the geodesic motion of pseudo-classical spinning
particles in the NUT–RN space–time, which is the RN space–time generalized
with NUT (or magnetic mass) parameter. This work may be interesting in that it
provides results parallel to those obtained in the RN and Taub–NUT space–times.

The NUT–RN space–time includes the NUT space–time that is sometimes
considered as unphysical. According to Misner (1963), the NUT space–time is one
that does not admit an interpretation without a periodic time coordinate, a space–
time without reasonable spacelike surfaces, and an asymptotically zero curvature
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space–time that apparently does not admit asymptotically rectangular coordinates.
McGuire and Ruffini (1975) suggested that the space–times endowed with NUT
parameter should never be directly, physically interpreted. This makes the study
of pseudo-classical spinning particles in the NUT–RN space–time interesting.

The plan of this paper is as follows. In section 2 we summarize the relevant
equations for the motion of spinning particles in curved space–time. The genera-
lized Killing equations for spinning spaces are investigated, and the constants
of motion are derived in terms of the solutions of these equations. In section
3 we analyze the motion of pseudo-classical spinning particles in the NUT–
RN space–time. We examine the generalized Killing equations for this space–
time and describe the derivation of the constants of motion. In section 4 we solve
the equations derived in the previous section for the special case of motion on a
cone and in a plane for which we chooseθ = π/2. In section 5 we investigate a
new type of supersymmetry in the NUT–RN space–time. Thisnongenericsuper-
symmetry is generated by the Killing–Yano tensor. In section 6 we present our
remarks.

2. MOTION IN SPINNING SPACE

The geodesic for spinning space can be obtained from the action,

S=
∫ b

a
dτ

(
1

2
gµν(x)ẋµ ẋν + i

2
gµν(x)ψµ Dψν

Dτ

)
(1)

The overdot, here and in the following, denotes an ordinary derivative with respect
to proper time,d/dτ . The covariant derivative of Grassmann coordinatesψµ is
defined by

Dψµ

Dτ
= ψ̇µ + ẋλ0µλνψ

ν (2)

The trajectories along which the action is stationary under arbitrary variations
δxµ andδψµ vanishing at the endpoints are given by

D2xµ

Dτ 2
= ẍµ + 0µλν ẋλ ẋν = 1

2i
ψκψλRµκλν ẋ

ν (3)

Dψµ

Dτ
= 0 (4)

The antisymmetric tensor

Sµν = −iψµψν (5)

can formally be regarded as the spin-polarization tensor of the particle [Barducci
et al., 1976; Berezin and Marinov, 1977; Brinket al., 1976, 1977; Casalbuoni,
1976; Rietdijk and van Holten, 1990, 1993; van Holten and Rietdijk, 1993]. The
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equations of motion can be expressed in terms of this tensor. Equation (4) asserts
that the spin is covariantly constant,

DSµν

Dτ
= 0 (6)

Equation (5) implies the existence of a spin-dependent gravitational force

D2xµ

Dτ 2
= 1

2
SκλRµκλν ẋ

ν (7)

The spacelike componentsSi j are proportional to the particle’s magnetic dipole
moment, while the timelike componentsSio represent the electric dipole moment.
In the rest frame, the componentsSio vanish for free Dirac particles like free
electrons and quarks. This leads to the covariant constraint.

gνλ(x)Sµν ẋλ = 0 (8)

In Grassmann coordinates it takes the form

gµν(x)ẋµψν = 0 (9)

The concept of a Killing vector can be generalized to the case of spinning
manifolds. For this purpose it is necessary to consider variations ofxµ andψµ that
leave the action (1) invariant modulo boundary terms. Let us take the variations to
be of the form

δxµ = Rµ(x, ẋ, ψ) = R(1)µ(x, ψ)+
∞∑

n=1

1

n!
ẋν1 · · · ẋνn R(n+1)µ

ν1···νn
(x, ψ),

δψµ = Sµ(x, ẋ, ψ) = S(0)µ (x, ψ)+
∞∑

n=1

1

n!
ẋν1 · · · ẋνn S(n)µ

ν1···νn
(x, ψ) (10)

The Lagrangian transforms into a total derivative

δS=
∫ b

a
dτ

d

dτ

(
δxµpµ − i

2
δψµgµνψ

ν − J (x, ẋ, ψ)

)
(11)

wherepµ is the canonical momentum conjugate toxµ

pµ = gµν ẋ
ν + i

2
0µν;λψ

λψν = 5µ + i

2
0µν;λψ

λψν (12)

5µ being the covariant momentum. If the equations of motion are satisfied, it
follows from Noether’s theorem that the quantityJ is a constant of motion.

We consider the world-line Hamiltonian given by

H = 1

2
gµν5µ5ν (13)
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For any constant of motionJ (x, 5, ψ), the bracket withH vanishes

{H, J } = 0 (14)

where the Poisson–Dirac brackets for two functions of the covariant phase–space
variables (x,5, ψ) is defined by

{F, G} = DµF
∂G

∂5µ

− ∂F

∂5µ

DµG−Rµν ∂F

∂5µ

∂G

∂5ν

+ i (−1)aF
∂F

∂ψµ

∂G

∂ψµ

(15)

with

DµF = ∂µF + 0λµν5λ

∂F

∂5ν

− 0λµν ψν ∂F

∂ψλ

Rµν = i

2
ψσψλRσλµν (16)

Here,aF is the Grassmann parity ofF : aF = (0, 1) for F = (even, odd).
If we expandJ (x,5, ψ) in a power series in the covariant momentum

J = J (0)(x, ψ)+
∞∑

n=1

1

n!
5µ1 · · ·5µnJ (n)

µ1···µn
(x, ψ) (17)

then the bracket{H, J } vanishes for arbitrary5µ if and only if the components
of J satisfy the generalized Killing equations (Rietdijk and van Holten, 1990; van
Holten and Rietdijk, 1993)

D(µn+1 J (n)
µ1···µn) +

∂J (n)
(µ1···µn

∂ψσ
0σµn+1)λ

ψλ = i

2
ψσψλRσλν(µn+1J (n+1)ν

µ1···µn) (18)

where the parentheses denote full symmetrization over the indices enclosed.
In general, the symmetries of a spinning particle model can be divided into

two classes. First, there are four independentgenericsymmetries, which exist in
any theory [Rietdijk and van Holten, 1990; van Holten and Rietdijk, 1993]:

(i) Proper-time translations generated by the HamiltonianH (13);
(ii) Supersymmetry generated by the supercharge

Q =
∏
µ

ψµ (19)

(iii) Chiral symmetry generated by the chiral charge

0∗ = i [d/2]

d!
√

gεµ1···µd ψ
µ1 · · ·ψµd (20)
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(iv) Dual supersymmetry, generated by the dual supercharge

Q∗ = i {0∗, Q} = i [d/2]

(d − 1)!
√

g εµ1···µd5
µ1ψµ2 · · ·ψµd (21)

whered is the dimension of space–time.

As a rule one has the freedom to choose the value of the superchargeQ and
any choice gives a consistent model. The condition for the absence of an intrinsic
electric dipole moment of physical fermions (leptons and quarks) as formulated
in Eq. (9) implies

Q = 0 (22)

However, for the time being, we shall not fix the value of the supercharge to keep
the presentation as general as possible.

The second kind of conserved quantities, callednongeneric, depend on the
explicit form of the metricgµν(x). In recent literature there have been exhibited
the constants of motion in the schwarzschild [Rietdijk and van Holten, 1993],
Taub–NUT [Vaman and Visinescu, 1996; 1998; van Holten 1995; Visinescu, 1997,
1994a,b], Kerr-Newman [Gibbonset al., 1993; van Holten, 1994] spinning spaces.
In what follows we shall deal with thenongenericconstants of motion in connection
with the Killing equation (18).

We remind that a tensorfµv is called a Killing–Yano tensor of valence 2
[Dietz and Rudinger, 1981; Yano, 1952] if it is completely antisymmetric and it
satisfies the equation

Dν fλµ + Dλ fνµ = 0 (23)

The Killing–Yano tensors play a key role in the Dirac theory on a curved space–time
[Carter and McLenagham, 1970]. The study of the generalized Killing equations
strengthens the connection of the Killing–Yano tensors with the supersymmetric
classical and quanntum mechanics of curved manifolds.

The nongenericsymmetry of the theory is generated by the phase–space
function Q f ,

Q f = J (1)µ5µ + J (0) (24)

whereJ (1)(x, ψ) andJ (0)(x, ψ) are independent of5. This charge generates the
supersymmetry transformation

δxµ = −i ε f µa ψ
a ≡ −i εJ (1)µ (25)

where the infinitesimal parameterε of the transformation is Grassmann odd.
Greek and latin indices, which refer to world and Lorentz indices respectively,
are converted into each other by the vielbein (tetrad)ea

µ(x) and its inverseeµa (x).
When the ansatz (24) is inserted into the generalized Killing equations (18), it
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follows that

J (0) = i

3!
Cabc(x)ψaψbψc (26)

where the tensorsf µa andCabc satisfy the conditions

Dµ fνa + Dν fµa = 0 (27)

and

DµCabc= −
(
Rµνab f νc + Rµνbc f νa + Rµνca f νb

)
(28)

Using Eqs. (23) and (28) the tensorCabc can be expressed as follows:

Cabc= −2 D[a fbc] = −2eµa eνbeλc D[µ fνλ] (29)

where the square brackets denote full antisymmetrization over the indices enclosed.
Let there beN such symmetries specified byN sets of tensors (f µia , Ciabc), i =
1, . . . , N. The corresponding generators will be

Qi = f µia5µψ
a + i

3!
Ciabc ψ

aψbψc (30)

Obviously, for f µa = eµa andCabc= 0, the supercharge (19) is precisely of this
form. It is therefore convenient to assign the indexi = 0: Q = Q0, eµa = f µ0a, etc.,
when we refer to the quantities defining the standard supersymmetry.

The covariant form (15) of poisson–Dirac brackets gives the following algebra
for the conserved chargesQi :

{Qi , Qj } = −2i Zi j (31)

where

Zi j = 1

2
Kµν

i j 5µ5ν + I µi j 5µ + Gi j (32)

and

Kµν

i j =
1

2

(
f µia f νa

j + f νia f νa
j

)
(33)

I µi j =
i

2
ψaψbI µi jab

= i

2
ψaψb

(
f νib Dν f µja + f νjb Dν f µia +

1

2
f µc
i Cjabc+ 1

2
f µc

j Ciabc

)
(34)

Gi j = −1

4
ψaψbψcψd Gi jabcd

= −1

4
ψaψbψcψd

(
Rµνab f µic f νjd +

1

2
Ce

iab Cjcde

)
(35)
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We note thatKi j µν is a symmetric Killing tensor of second rank:

D(λKi j µν) = 0 (36)

I µi j is the corresponding Killing vector:

D(µ Ii j ν) = − i

2
ψaψb D(µ Ii j ν)ab = i

2
ψaψbRabλ(µ K λ

i j ν) (37)

andGi j is the corresponding Killing scalar:

DµGi j = −1

4
ψaψbψcψd DµGi jabcd = i

2
ψaψbRabλµ I λi j (38)

The functionsZi j satisfy the generalized Killing equations. Hence their bracket
with the Hamiltonian vanishes and they are constants of motion. Fori = j = 0,
Eq. (30) gives the usual supersymmetry algebra

{Q, Q} = −2i H (39)

If i or j is not equal to zero,Zi j correspond to new bosonic symmetries unless
Kµν

i j = λ(i j )gµν , withλ(i j ) a constant (may be zero). Then the corresponding Killing
vector I µi j and Killing scalarGi j disappear identically. Further, ifλ(i j ) 6= 0 the
corresponding supercharges close on the Hamiltonian and hence there exists a
second supersymmetry of the standard type. Thus the theory admits anN-extended
supersymmetry withN ≥ 2.Again, if we have a second independent Killing tensor
Kµν not proportional togµν , there exists a genuine new type of supersymmetry.

The quantityQi is a superinvariant

{Qi , Q} = 0 (40)

for the bracket defined by (15). The condition for this is

Kµν

oi = f µa eνa + f νa eµa = 0 (41)

As the Zi j are symmetric in (i j ) we can diagonalize them. This provides the
algebra

{Qi , Qj } = −2i δi j Zi (42)

whereZi are N + 1 conserved bosonic charges. If allQi satisfy condition (41),
the first of these diagonal charges (withi = 0) is the Hamiltonian:Z0 = H .

3. GEODESIC MOTION IN NUT–REISSNER–NORDSTROM
SPACE–TIME

In this section we shall apply the results of the previous section to investigate
the geodesic motion of a spinning particle in the NUT–RN space–time described
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by the matric

ds2 = −N(r )

[
dt + 4n sin2

(
θ

2

)
dϕ

]2

+ N−1(r ) dr2

+ (r 2+ n2)[dθ2+ sin2 θ dϕ2] (43)

where

N(r ) = 1− 2

r 2+ n2

[
Mr + n2− e2

2

]
, (44)

n is the NUT (or magnetic mass) parameter,e the charge, andM the total mass
of the gravitating body. The space–time, given by (43) and (44), gives (i) the
NUT space–time fore= 0, (ii) the Reissner–Nordstrom space–time forn = 0,
and (iii) the Schwarzschild space–time forn = e= 0.

Spaces with a metric of the form given above have an isometry groupSU(2)×
U (1). The metric has the four Killing vectors:

D(α) = R(α)µ∂µ, α = 0, . . . , 3, (45a)

where

D(0) = ∂

∂t
, D(1) = − sinϕ

∂

∂θ
− cotθ cosϕ

∂

∂ϕ
− 2n tan

(
θ

2

)
cosϕ

∂

∂t

D(2) = cosϕ
∂

∂θ
− cotθ sinϕ

∂

∂ϕ
− 2n tan

(
θ

2

)
sinϕ

∂

∂t
,

D(3) = ∂

∂ϕ
− 2n

∂

∂t
(45b)

D(0), which generates theU (1) of t translations, commutes with the other Killing
vectors. The remaining three vectors obey anSU(2) algebra with[

D(a), D(b)
] = −εabcD(c), (a, b, c = 1, 2, 3) (46)

This can be contrasted with the Reissner–Nordstrom space–time, where the
isometry group at spacelike infinity isSO(3)×U (1). This illustrates the essential
topological character of the magnetic mass (Mueller and Perry, 1986; Sorkin,
1983).

In the purely bosonic case these invariances would correspond to conservation
of the so-called “relative electric charge” and the angular momentum (Cordani
et al., 1988; Feher and Horvathy, 1987; Gibbons and Manton, 1986; Gibbons and
Ruback, 1987, 1988; Visinescu, 1993; Zimmerman and Shahir, 1989).

q = −N

(
ṫ + 4n sin2

(
θ

2

)
ϕ̇

)
(47)

j = r × p+ 2nq
r
r

(48)
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The first generalized Killing equation has the form

B(α)
,µ +

∂B(α)

∂ψσ
0σµλψ

λ = i

2
ψλψσ RλσνµR(α)ν (49)

This shows that for each Killing vector,R(α)
µ , there is an associated Killing scalar,

B(α). So, if we limit ourselves to variations (10) that terminate after the terms linear
in ẋµ, we get the constants of motion

J(α) = B(α) + ẋµR(α)
µ (50)

Equation (50) asserts that the Killing scalars contribute to the “relative electric
charge” and the total angular momentum.

Inserting the expressions for the connection and the Riemann curvature com-
ponents corresponding to the NUT–RN space–time in (49), we obtain for the
Killing scalars

B(0) = V Str − 4nV sin2

(
θ

2

)
Srϕ − 2nN sinθ Sθϕ (51a)

B(1) = −2nV cosϕ tan

(
θ

2

)
(1+ cosθ ) Str

− nN cosϕ cosθ Stθ − r sinϕ Sr θ

+ cosϕ cotθ

[
8n2V cosθ tan

(
θ

2

)
sin2

(
θ

2

)
− r sin2 θ

]
Srϕ

+ cosϕ

[
(r 2+ n2) sin2 θ + 4n2N − 8n2N tan2

(
θ

2

)]
Sθϕ (51b)

B(2) = −2nV sinϕ tan

(
θ

2

)
(1+ cosθ )Str − nN sinϕ cosθStθ + r cosϕSr θ

+ sinϕ cotθ

[
8n2V cosθ tan

(
θ

2

)
sin2

(
θ

2

)
− r sin2 θ

]
Srϕ

+ sinϕ

[
(r 2+ n2) sin2 θ + 4n2N − 8n2N tan2

(
θ

2

)]
Sθϕ (51c)

B(3) = −2nV cosθStr + 4nV sin2

(
θ

2

)
Stθ

+
[
r sin2 θ + 8n2V sin2

(
θ

2

)
cos2 θ

]
Srϕ

+ sinθ

[
(r 2+ n2) cosθ − 2n2N

(
1+ 4 sin2

(
θ

2

))]
Sθϕ (51d)
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where

V = 1

(r 2+ n2)2
[M(r 2− n2)+ (2n2− e2)r ] (51e)

andN is given by (44).
Taking into account the contribution of the Killing scalars, one finds for the

conserved quantitiesJ (α),

J (0) = B(0)+ q (52a)

J (1) = B(1)− (r 2+ n2) sinϕ θ̇ − (r 2+ n2) cosθ sinθ cosϕ ϕ̇ + 2nqsinθ cosϕ

(52b)

J (2) = B(2)+ (r 2+ n2) cosϕ θ̇ − (r 2+ n2) cosθ sinθ sinϕ ϕ̇ + 2nqsinθ sinϕ

(52c)

J (3) = B(3)+ (r 2+ n2) sin2 θ ϕ̇ + 2nqcosθ (52d)

It is obvious that the “relative electric charge,”q, is no longer conserved,
contrasting with the purely bosonic case. Also, the conserved total angular mo-
mentum is the sum of the orbital angular momentum, the Poincare contribution
and the spin angular momentum

J = B+ j (53)

with J = (J (1), J (2), J (3)) andB = (B(1), B(2), B(3)).
From (52) we can derive two very interesting relations

J (1) sinϕ − J (2) cosϕ = −r Sr θ − (r 2+ n2) θ̇ (54)

J (1) sinθ cosϕ + J (2) sinθ sinϕ + J (3) cosθ

= 2nJ (0)− 4nV Str +
(

4V sin2

(
θ

2

)
− N sinθ

)
n cosθStθ

+ 8n2V sin2

(
θ

2

)[
1+ cos2 θ

(
cosθ + tan

(
θ

2

))]
Srϕ +

[
(r 2+ n2)

+ 8n2N

(
1− tan2

(
θ

2

))
− 2n2N

(
1+ 4 sin2

(
θ

2

))
cosθ

]
sinθSθϕ (55)

Equation (55) expresses the fact that the total angular momentum in the
radial direction receives contributions from the spin angular momentum, the orbital
angular momentum in that direction being zero.
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In addition there are four universal conserved charges described in the previ-
ous section. Using the notation from this section, we have

(i) The energy

E = 1

2N
ṙ 2+ 1

2
(r 2+ n2)(θ̇

2+ sin2 θϕ̇2)− 1

2
N

(
ṫ + 4n sin2

(
θ

2

)
ϕ̇

)2

(56)
(ii) The supercharge

Q = 1

N
ṙψ r + (r 2+ n2)θ̇ψθ + qψ t

+
[
4n sin2

(
θ

2

)
q + (r 2+ n2) sin2 θϕ̇

]
ψϕ (57)

(iii) The chiral charge

0∗ = (r 2+ n2) sinθψ rψθψϕψ t (58)

(iv) The dual supercharge

Q∗ = (r 2+ n2) sinθ (ṙψθψϕψ t − θ̇ψ rψϕψ t

+ ϕ̇ψ rψθψ t − ṫψ rψθψϕ) (59)

Finally, keeping in mind thatψµ is covariantly constant as formulated in (4),
the rate of change of spin is

ψ̇
r = [r N − (r 2+ n2)V ](θ̇ψθ + sin2 θϕ̇ψϕ) (60a)

ψ̇
θ = − r θ̇

r 2+ n2
ψ r − r ṙ

r 2+ n2
ψθ

+ sinθ

[(
cosθ − 4n2N

r 2+ n2
sin2

(
θ

2

))
ϕ̇ + nq

r 2+ n2

]
ψϕ (60b)

ψ̇
ϕ = nN

r 2+ n2
cosecθ θ̇ψ t − r ϕ̇

r 2+ n2
ψ r −

(
cotθ ϕ̇ + nq

r 2+ n2
cosecθ

)
ψθ

−
[

r ṙ

r 2+ n2
+
(

cotθ − 2n2N

r 2+ n2
tan

(
θ

2

))
θ̇

]
ψϕ (60c)

ψ̇
t =

(
V

N
ṙ − 2n2N

r 2+ n2
tan

θ

2
θ̇

)
ψ t +

[
4n sin2 θ

2

(
r

r 2+ n2
− 2V

N

)
ϕ̇ − V

N2
q

]
ψ r

−
(

2n sin2 θ

2
tan

θ

2
ϕ̇ − 2n2q

r 2+ n2
tan

θ

2

)
ψθ

+
[
4n sin2 θ

2

(
r

r 2+ n2
− V

N

)
ṙ − 2n sin2 θ

2
tan

θ

2

(
1+ 4n2N

r 2+ n2

)
θ̇

]
ψϕ

(60d)
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As a rule these complicated equations could be integrated to obtain the full
solution of the equations of motion for the usual coordinates and Grassmann coor-
dinates. These equations are quite intricate and the general solution is by no means
illuminating. Instead of the general solution, we shall discuss special solutions in
the next section for the motion on a cone and in a plane.

4. SPECIAL SOLUTIONS

In this section we solve the equations derived in the previous section for the
motion on a cone and in a plane. We first consider the motion on a cone.

Let us choose thez axis alongJ so that the motion of the particle may be
conveniently described in terms of polar coordinates

r = r e(θ , ϕ) (61)

with

e= (sinθ cosϕ, sinθ sinϕ, cosθ ). (62)

The equations of motion for the spin components whenθ̇ = 0 are

Ṡ
r θ = − r ṙ

r 2+ n2
Sr θ + sinθ

[(
cosθ − 4n2N

r 2+ n2
sin2

(
θ

2

))
ϕ̇ + nq

r 2+ n2

]
Srϕ

− [r N − (r 2+ n2)V ] sin2 θϕ̇Sθϕ (63a)

Ṡ
rϕ = − r ṙ

r 2+ n2
Srϕ −

(
cotθϕ̇ + nq

r 2+ n2
cosecθ

)
Sr θ (63b)

Ṡ
θϕ = − 2r ṙ

r 2+ n2
Sθϕ + r ϕ̇

r 2+ n2
Sr θ (63c)

Ṡ
θ t =

(
V

N
− r

r 2+ n2

)
ṙ Sθ t

+ sinθ

[(
cosθ − 4n2N

r 2+ n2
sin2

(
θ

2

)
ϕ̇ + nq

r 2+ n2

]
Sϕt

−
[
4n sin2

(
θ

2

)(
r

r 2+ n2
− 2V

N

)
ϕ̇ − V

N2
q

]
Sr θ

+ 4n sin2

(
θ

2

)(
r

r 2+ n2
− V

N

)
ṙ Sθϕ (63d)
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Ṡ
rt = [r N − (r 2+ n2)V ] sin2 θϕ̇Sϕt + V

N
ṙ Srt

− 2n tan

(
θ

2

)(
sin2

(
θ

2

)
ϕ̇ − nq

r 2+ n2

)
Sr θ

+ 4n sin2

(
θ

2

)(
r

r 2+ n2
− V

N

)
ṙ Srϕ (63e)

Ṡ
ϕt = − r ϕ̇

r 2+ n2
Srt − cosecθ

(
cosθϕ̇ + nq

r 2+ n2

)
Sθ t +

(
V

N
− r

r 2+ n2

)
ṙ Sϕt

−
[
4n sin2

(
θ

2

)(
r

r 2+ n2
− 2V

N

)
ϕ̇ − V

N2
q

]
Srϕ

+ 2n tan

(
θ

2

)(
sin2

(
θ

2

)
ϕ̇ − nq

r 2+ n2

)
Sθϕ (63f)

Since we are looking for solutions witḣθ = 0 and becauseJ (1) = J (2) = 0,
we have from (54),

Sr θ = 0 (64)

This relation implies0∗ = 0.
A particular solution may be obtained, if we chooseSϕt = 0, in the from

Srϕ = Crϕ

√
r 2+ n2

(65a)

Sθϕ = Cθϕ

r 2+ n2
(65b)

Sθ t =
(

N

r 2+ n2

)1/2

Cθ t − 2n sin2

(
θ

2

)
Cθϕ

r 2+ n2
(65c)

Srt =
√

NCrt − 4n sin2

(
θ

2

)
Crϕ

√
r 2+ n2

(65d)

whereCrϕ , Cθϕ , Cθ t , Crt are Grassmann constants.
We investigate the case in whichQ = 0 (Eq. (22)). From Rietdijk and van

Holten (1993), we have0∗ = Q∗ = 0. For the spin components we deduce the
following relations:

ṙ

N
Sr θ =

[
(r 2+ n2) sin2 θ ϕ̇ + 4n sin2

(
θ

2

)
q

]
Sθϕ + qSθ t (66a)
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ṙ

N
Srϕ = qSϕt (66b)

ṙ

N
Srt = −

[
(r 2+ n2) sin2 θ ϕ̇ + 4n sin2

(
θ

2

)
q

]
Sϕt (66c)

The conditionQ = 0 modifies drastically the form of the solutions.
In spite of the complexity of the equations, we have a simple exact solution

for the components of the spin-tensor,

Sθϕ = Cθϕ

r 2+ n2
(67)

From (52) we can deduce that

q = J (0)+ 2nN sinθ
Cθϕ

r 2+ n2
(68)

ϕ̇ = 1

r 2+ n2

[
2nJ (0)

cosθ
+ 4n2N

r 2+ n2
· 4− cosθ (1+ cosθ )

sinθ (1+ cosθ )
Cθϕ + sinθ

cosθ
Cθϕ

]
(69)

These relations may be integrated to obtain the expressions forϕ andt . We
can deducėr from the energy, given in (56).

We now study the special case of motion in a plane, for which we choose
θ = π/2. For scalar particles any solution would actually describe planar motion,
because the orbital angular momentum of a scalar particle is always conserved.
But this is no longer true in general for spinning particles, for which only the total
angular momentum is constants of motion. Planar motion of spinning particles is
strictly possible only in special cases, in which orbital and spin angular momentum
are separately conserved. This happens only in two kinds of situations: (i) the
orbital angular momentum vanishes, or (ii) spin and orbital angular momentum
are parallel (Rietdijk and van Holten, 1993).

For θ = π/2 the equations of motion are

Ṡ
r θ = − r ṙ

r 2+ n2
Sr θ − 2n2N

r 2+ n2
ϕ̇Srϕ − [r N − (r 2+ n2)V ] ϕ̇Sθϕ (70a)

Ṡ
rϕ = − r ṙ

r 2+ n2
Srϕ (70b)

Ṡ
θϕ = − 2r ṙ

r 2+ n2
Sθϕ + r ϕ̇

r 2+ n2
Sr θ (70c)

Ṡ
θ t =

(
V

N
− r

r 2+ n2

)
ṙ Sθ t − 2n2N

r 2+ n2
ϕ̇Sϕt − 2n

(
r

r 2+ n2
− 2V

N

)
ϕ̇Sr θ

+ 2n

(
r

r 2+ n2
− V

N

)
ṙ Sθϕ (70d)



P1: VENDOR/GEE/LZX P2: GCV/GCV/GCO/GCQ/FNV/GCZ/LZX QC:

International Journal of Theoretical Physics [ijtp] PP131-301582 May 14, 2001 18:20 Style file version Nov. 19th, 1999

Spinning Particles in NUT–Reissner–Nordstrom Space–Time 1321

Ṡ
rt = V

N
ṙ Srt − nϕ̇Sr θ + 2n

(
r

r 2+ n2
− V

N

)
ṙ Srϕ

+ [r N − (r 2+ n2)V ]ϕ̇Sϕt (70e)

Ṡ
ϕt =

(
V

N
− r

r 2+ n2

)
ṙ Sϕt + nϕ̇Sθϕ − r ϕ̇

r 2+ n2
Srt

− 2n

(
r

r 2+ n2
− 2V

N

)
ϕ̇Srϕ (70f)

Case (i). In this case the solution describes a particle moving along a fixed
radius, for which ˙ϕ = 0. We are able to obtain a simple exact solution,

Srϕ = Crϕ

√
r 2+ n2

(71a)

Sθϕ = Cθϕ

r 2+ n2
(71b)

Sθ t =
(

N

r 2+ n2

)1/2

Cθ t − nCθϕ

r 2+ n2
(71c)

Srt =
√

NCrt − 2n
Crϕ

√
r 2+ n2

(71d)

Sϕt =
(

N

r 2+ n2

)1/2

Cϕt (71e)

A special interest represents the case when the supersymmetry constraint
Q = 0. From this condition we obtain,

ṙ

N
Sr θ = (r 2+ n2)ϕ̇Sθϕ ,

ṙ

N
Srt = −(r 2+ n2)ϕ̇Sϕt (72)

For ϕ̇ = 0 we only have a spin component nenule,

Sθϕ = Cθϕ

r 2+ n2
(73)

In this casėr andṫ have a simple expression,

ṙ =
√

2E N, ṫ =
[

4n2N

r 2+ n2
− 1

] J (0)

N
(74)

Case (ii). This possibility concerns motion for which ˙ϕ 6= 0. From Q = 0
we obtain the following relations:

ṙ

N
Sr θ = −J (3)Sθϕ ,

ṙ

N
Srt = −J (3)Stϕ. (75)
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It is very interesting that even in this case we have a spin component nenule:

Sθϕ = Cθϕ

r 2+ n2
(76)

In this case the expressions for theṫ , ϕ̇, andṙ can be integrated to give the full
solution of the equations of motion for all coordinates and spins:

ṫ = −J
(0)

N
− 2n

(
Cθϕ

r 2+ n2
+ ϕ̇

)
(77a)

ṙ = {N(2E − (r 2+ n2)ϕ̇2)}1/2 (77b)

ϕ̇ = 1

r 2+ n2

(
J (3)+ 6n2N

Cθϕ

r 2+ n2

)
. (77c)

5. NONGENERIC SYMMETRY

In this section we apply the results of section 2 to investigate a new type of
supersymmetry in the NUT–RN space–time described by the metric in (43). The
electromagnetic field in this space–time is described by

F = e(r 2+ n2)−4(r 2− n2)dr ∧
[
dt + 4n sin2

(
θ

2

)
dϕ

]
− 2e(r 2+ n2)−4nr sinθdθ ∧ r 2dϕ (78)

The Killing–Yano tensor is obtained from

1

2
fµνdxµ ∧ dxν = −n dr ∧

[
dt + 4n sin2

(
θ

2

)
dϕ

]
− r sinθdθ ∧ r 2dϕ (79)

The vielbeinea
µ(x) has the following expressions:

e0
µ dxµ = −

√
N

[
dt + 4n sin2

(
θ

2

)
dϕ

]

e1
µ dxµ = 1√

N
dr

e2
µ dxµ =

√
(r 2+ n2) dθ

e3
µ dxµ = − sinθ√

(r 2+ n2)
r 2dϕ (80)
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The components off a
µ (x) can be written as follows:

f 0
µ dxµ = − n√

N
dr

f 1
µ dxµ =

√
Nn

[
dt + 4n sin2

(
θ

2

)
dϕ

]

f 2
µ dxµ = − r 3 sinθ√

(r 2+ n2)
dϕ

f 3
µ dxµ = r

√
(r 2+ n2) dθ (81)

Using Eq. (29) we get the components ofCabc(x) as follows:

C012= 0, C013= 0, C023= 0, C123= −2
√

N (82)

Inserting the quantities derived in Eqs. (81) and (82) into Eq. (30) we obtain the new
supersymmetry generatorQ f for the NUT–RN space–time. From Eq. (33)–(35)
we can construct the Killing tensor, vector, and scalar. The results are

Kµν(x) dxµdxν = −n2

N
dr2+ n2N

[
dt + 4n sin2

(
θ

2

)
dϕ

]2

+ r 6 sin2 θ

r 2+ n2
dϕ2+ r 2(r 2+ n2) dθ2 (83)

Iµ(x) dxµ = 2r 2
√

N

(
r sinθ√
(r 2+ n2)

Srϕ +
√

N cosθ Sθϕ
)

dϕ

− (r 2+ n2)N cosθSθϕ dϕ

−
√

((r 2+ n2)N)(r sinθSrϕ +
√

((r 2+ n2)N) cosθSθϕ) dϕ

+
√

((r 2+ n2)N)(nStϕ + r Sr θ ) dθ (84)

G = −2en

r 2+ n2
Str Sθϕ (85)

From the Poission–Dirac brackets (15) it can be verfied in a straight forward
manner that these equations satisfy theS0(3, 1) algebra.

The expression forQ f and Eqs. (83)–(85) then define the conserved charge
Z = i /2{Q f , Q f }.
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6. REMARKS

Our main concern has been the motion of pseudo-classical spinning particles
in the NUT–RN space–time. In this analysis we have restricted ourselves to the
contribution of the spin contained in the Killing scalarsB(α)(x, ψ) defined by (49).
In spite of the complexity of the equations, we are able to present special solutions
for the motion on a cone and on a plane. The supersymmetry constraintQ = 0
plays a very important role for the forms of solutions.

The supersymmertric extension of the NUT–RN space–time admits four stan-
dard supersymmetries along with several fermionic symmerties. The existence of
such fermionic symmetries is closely related to the existence of Killing–Yano
tensors (Vaman and Visinescu, 1996; Gibbonset al., 1993).

The Killing tensorKµν given in (83) defines a constant of motion (directly)
for spinless particles in NUT–RN space–time, whereas for spinning particles it
requires the nontrivial contributions from spin, which involve the Killing vector
and Killing scalar computed in (84) and (85). This spin-dependent part is described
by the antisymmetric Killing–Yano tensorfµν , which satisfies (23) and is the square
root of the Killing tensor.

The results of this paper may be interesting in the study of fermion modes in
gravitational instantons as well as in long-range monopole dynamics. The results
can be specialized for the NUT, Reissner–Nordstrom, and Schwarzschild space–
times fore= 0, n = 0, ande= n = 0, respectively. The results can be extended
to the NUT–RN space–time generalized with a cosmological parameter. This type
of extension may be interesting from the point of view of an inflationary scenario
of early universe.
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